- Oliver, S., Williams, M., Jolly, M. K., Gonzalez, D., & Powathil, G. (2025). Exploring the role of EMT in ovarian cancer progression using a multiscale mathematical model. npj Systems Biology and Applications, 11(1), 36.
- Gravenor, M. B., Dawson, M., Bennett, E., Thorpe, B., White, C., Rahat, A., … & Lucini, B. (2025). Real-time epidemiological modelling during the COVID-19 emergency in Wales. In More UK Success Stories in Industrial Mathematics (pp. 97-104). Cham: Springer Nature Switzerland.
- Pugh, K., Jones, R. D., Powathil, G., & Hamis, S. (2025). Simulations probe the role of space in the interplay between drug-sensitive and drug-resistant cancer cells. Journal of Theoretical Biology, 602, 112048.
- Spinicci, K., Powathil, G., Stéphanou, A. (2024). Modelling the impact of HIF on metabolism and the extracellular matrix: consequences for tumour growth and invasion. Bulletin of Mathematical Biology, In press.
- Pugh, K., Davies, M., Powathil, G. (2023). A mathematical model to investigate the effects of ceralasertib and olaparib in targeting the cellular DNA damage response pathway, Journal of Pharmacology and Experimental Therapeutics 387 (1), 55-65.
- Gravenor, M.B., Dawson, M., Bennett, E., horpe, B., White, C., Rahat, A., Archambault D., Picco, N., Powathil, G., Lucini, B. (2024). Real-time epidemiological modelling during the COVID-19 emergency in Wales. medRxiv, 2023.08. 02.23293519
- Mohammadrezaei, D., Moghimi, N., Vandvajdi, S., Powathil, G., Hamis, S., & Kohandel, M. (2023). Predicting and elucidating the post-printing behavior of 3D printed cancer cells in hydrogel structures by integrating in-vitro and in-silico experiments. Scientific Reports, 13(1), doi: 10.1038/s41598-023-28286-9.
- SPINICCI, K., Jacquet, P., Powathil, G., & Stéphanou, A. (2022). Modeling the role of HIF in the regulation of metabolic key genes LDH and PDH: Emergence of Warburg phenotype. Computational and Systems Oncology, 2(3), doi:10.1002/cso2.1040.
- Brüningk, S. & Powathil, G. (2022). Modelling Direct and Indirect Effects of Radiation: Experimental, Clinical and Environmental Implications. NATO Science for Peace and Security Series A: Chemistry and Biology (pp. 69-87). Springer Netherlands. doi: 10.1007/978-94-024-2101-9_5.
- Hamis, S., Yates, J., Chaplain, M. A., & Powathil, G. G. (2021). Targeting cellular DNA damage responses in cancer: An in vitro-calibrated agent-based model simulating monolayer and spheroid treatment responses to ATR-inhibiting drugs. Bulletin of Mathematical Biology, 83(10). doi: 10.1007/s11538-021-00935-y.
- Liu, R., Higley, K. A., Swat, M. H., Chaplain, M. A., Powathil, G. G., & Glazier, J. A. (2021). Development of a coupled simulation toolkit for computational radiation biology based on Geant4 and CompuCell3D. Physics in Medicine & Biology, 66(4), 045026.doi:10.1088/1361-6560/abd4f9.
- Hamis, S., Stratiev, S., & Powathil, G. G. (2021). Uncertainty and sensitivity analyses methods for agent-based mathematical models: An introductory review. THE PHYSICS OF CANCER: Research Advances, 1-37. doi: 10.1142/9789811223495_0001.
- Hamis, S., Kohandel, M., Dubois, L. J., Yaromina, A., Lambin, P., & Powathil, G. G. (2020). Combining hypoxia-activated prodrugs and radiotherapy in silico: Impact of treatment scheduling and the intra-tumoural oxygen landscape. PLoS computational biology, 16(8), e1008041, doi: 10.1371/journal.pcbi.1008041
- Hamis, S., & Powathil, G. (2020). Can we Crack Cancer?. In The Art of Theoretical Biology (pp. 50-51). Springer, doi: 10.1007/978-3-030-33471-0_25
- Mothersill, C. E., Oughton, D. H., Schofield, P. N., Abend, M., Adam-Guillermin, C., Ariyoshi, K., … & Geras’ kin, S. A. (2020). From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. International Journal of Radiation Biology, 1-16. doi: 10.1080/09553002.2020.1793022
- Stephanou, A., Ballet, P., Powathil, G. (2019). Hybrid Data-Based Modelling in Oncology: Successes, Challenges and Hopes, Mathematical Modelling of Natural Phenomena, 11 (1) 37-48, doi: 10.1051/mmnp/2019026
- Meaney, C., Powathil, G., Yaromina, A., J Dubois, L., Lambin, P., Kohande, M. 2019 Role of hypoxia-activated prodrugs in combination with radiation therapy: An in silico approach. Mathematical Biosciences and Engineering 16 (6) 6257-6273, doi: 10.3934/mbe.2019312
- Mothersill, C., Abend, M., Bréchignac, F., Copplestone, D., Geras’kin, S., Goodman, J., Horemans, N., Jeggo, P., McBride, W., Mousseau, T., O’Hare, A., Papineni, R., Powathil, G., Schofield, P., Seymour, C., Sutcliffe, J., Austin, B. 2019 The tubercular badger and the uncertain curve:- The need for a multiple stressor approach in environmental radiation protection. Environmental Research 168 130-140, doi:10.1016/j.envres.2018.09.031
- Hamis, S., Powathil, G., Chaplain, M. (2019) Blackboard to Bedside: A Mathematical Modeling Bottom-Up Approach Toward Personalized Cancer Treatments. JCO Clinical Cancer Informatics 3 1-11, doi: 10.1200/CCI.18.00068
- Hamis, S., Nithiarasu, P. & Powathil, GG. (2018). What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance. Journal of Theoretical Biology 454, 253, doi: 10.1016/j.jtbi.2018.06.014
- Bowness, R., Chaplain, M.A.J., Powathil, GG. & Gillespie, S.H. (2018). Modelling the effects of bacterial cell state and spatial location on tuberculosis treatment: Insights from a hybrid multiscale cellular automaton model. Journal of Theoretical Biology 446, 87-100. doi:10.1016/j.jtbi.2018.03.00
- Mothersill, C., Abend, M., Bréchignac, F., Iliakis, G., Impens, N., Kadhim, M., Møller, A.P., Oughton, D., Powathil, G., Saenen, E., Seymour, C., Sutcliffe, J., Tang, F. & Schofield, P.N. (2018). When a duck is not a duck; a new interdisciplinary synthesis for environmental radiation protection. Environmental Research 162, 318-324. doi:10.1016/j.envres.2018.01.022
- Brüningk, S., Powathil, G., Ziegenhein, P.., Ijaz, J., Rivens, I., Nill, S., Chaplain, M., Oelfke, U.. & ter Haar, G. (2018). Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments. Journal of The Royal Society Interface 15(138), 20170681, doi:10.1098/rsif.2017.0681
- Borasi, G., Nahum, A., Paulides, M., Powathil, G., Russo, G., Fariselli, L., Lamia, D., Cirincion, R.,Forte, G., Borrazzo, C., Caccia, B., diCastro, E., Pozzi, S. & Gilardi, M. (2016). Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma. Journal of Therapeutic Ultrasound 4(1), doi:10.1186/s40349-016-0078-3
- Kim, Y., Kang, H., Powathil, G., Kim, H., Trucu, D., Lee, W., Lawler, S., Chaplain, M. 2018 Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma PLOS ONE 13 10 e0204865, doi: 0.1371/journal.pone.0204865
- Kim, Y., Powathil, G., Kang, H., Trucu, D., Kim, H., Lawler, S. & Chaplain, M. (2015). Strategies of Eradicating Glioma Cells: A Multi-Scale Mathematical Model with MiR-451-AMPK-mTOR Control. PLOS ONE 10(1), e0114370 doi:10.1371/journal.pone.0114370
- Powathil, G., Munro, A., Chaplain, M. & Swat, M. (2016). Bystander effects and their implications for clinical radiation therapy: Insights from multiscale in silico experiments. Journal of Theoretical Biology 401, 1-14, doi:10.1016/j.jtbi.2016.04.010
- Chaplain, M. & Powathil, G. (2015). Multiscale modelling of cancer progression and treatment control: The role of intracellular heterogeneities in chemotherapy treatment. Biophysical Reviews and Letters, doi:10.1142/S1793048015500058
- Powathil, G., Swat, M. & Chaplain, M. (2014). Systems oncology: Towards patient-specific treatment regimes informed by multiscale mathematical modelling. Seminars in Cancer Biology, doi:10.1016/j.semcancer.2014.02.003
- Powathil, G. & Chaplain, M. (2014) A Hybrid Multiscale Approach in Cancer Modelling and Treatment Prediction. In A. D’onofrio and A. Gandolfi (Ed.), Mathematical Oncology 2013. (pp. 237-263). Birkhauser., doi: 10.1007/978-1-4939-0458-7_8
- Powathil, G., Chaplain, M. & Swat, M. (2014). Investigating the development of chemotherapeutic drug resistance in cancer: A multiscale computational study (preprint). arXiv.org, http://arxiv.org/abs/1407.0865
- Powathil, G., Adamson, D. & Chaplain, M. (2013). Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model. PLoS Computational Biology 9(7), e100312, doi:10.1371/journal.pcbi.1003120
- Powathil, G., Gordon, K., Hill, L. & Chaplain, M. (2012). Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model. Journal of Theoretical Biology 308, 1-19., doi:10.1016/j.jtbi.2012.05.015
- Powathil, G., Thompson, A. & Chaplain, M. (2012). The role of cellular heterogeneity on the therapeutic response of breast cancer: Clinical insights from a hybrid multiscale computational model. Cancer Research 72(24 Supplement), P5-05-02-P5-05-02., doi:10.1158/0008-5472.SABCS12-P5-05-02
- Powathil, G., Kohandel, M., Milosevic, M. & Sivaloganathan, S. (2012). Modeling the Spatial Distribution of Chronic Tumor Hypoxia: Implications for Experimental and Clinical Studies. Computational and Mathematical Methods in Medicine 2012, 1-11. doi:10.1155/2012/410602
- Powathil, G., Kohandel, M., Sivaloganathan, S., Oza, A. & Milosevic, M. (2007). Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Physics in Medicine and Biology 52(11), 3291-3306., doi:10.1088/0031-9155/52/11/023